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Sun-as-a-star Helioseismic Observations: A background

Sunspot number record Source: WDC-SILSO, Royal Observatory of Belgium, Brussels
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Un-interrupted Helioseismic Observations: Sun-as-a-star (Unresolved)

Instruments onboard SDO
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Un-interrupted Helioseismic Observations: Resolved Disk
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v Sun-as-a-star observations - Some basics

4 Why are these observations important?
v’ Results




Sun-as-a-star Observations: Propagating modes
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Sun-as-a-star Observations: Why are these important?
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Sun-as-a-star observations - Temporal Variation

1860 yHz < V< 3450 yHz; ¢ =0-3
Common modes in individual data sets.




Sun-as-a-star observations - Temporal Variation

1860 yHz < V< 3450 yHz; ¢ =0-3
Common modes in all 3 data sets.




Quasi-biennial Periodicity - A Hint for the Second Dynamo

Unresolved observations: Low-degree Modes (0 < £ < 2)
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Quasi-biennial Periodicity - A Hint for the Second Dynamo

Unresolved observations from GOLF Resolved observations from GONG
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Quasi-biennial Periodicity - A Hint for the Second Dynamo

Unresolved observations from GOLF Resolved observations from GONG
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Temporal Variations - Based on Upper Turning Points

Acoustic cutoff frequency as a function of radius.

Low-v range
‘Mid-v range
High-v range 1

High-v range 2

High-v range 1

Low-v range

0.992 0.994 0.996 0.998 1.000

r/R
Low-frequency range: 1860 yHz < v < 2400 pHz
Mid-frequency range: 2400 pHz < v ¢ 2920 pHz
High-frequency range 1: 2920 pyHz < v < 3450 pHz
High-frequency range 2: 3450 pHz < v < 4250 pHz
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Temporal Variations - Based on Upper Turning Points: contemporaneous bata
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Temporal Variations - Based on Upper Turning Points: contemporaneous bata
Black: F10 ; Color: Frequency shifts
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Contemporaneous Data Sets: Quantitative Analysis
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11/28/2018 SOHO 29 — Nice, November 2018 16




Temporal Variations - Based on Upper Turning Points

Previous Studies from BiSON
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Very low-frequencies from GOLF

1860 pHz < VvV < 2400 puHz 1600 yHz < vV < 1860 puHz
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Very low-frequencies from GOLF

Thus, the studies, based on un-interrupted Sun-as-a-star (unresolved) observations from

about 3 solar cycles, suggest that

> the solar cycle-related changes in oscillation frequencies are different from cycle to

cycle.

> the magnetic layer has become thinner after cycle 22 and this change is confined to

shallower layers of the Sun.

If this is true, we should see similar variations in intermediate degree modes that do not travel

to the solar core.



Comparison with the modes confined to convection zone

Black: F10 ; Color: Frequency shifts
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Seismic minimum between Cycles 23-24

Unresolved observations from GOLF Resolved observations from GONG
Low-degree Modes (0 ¢ ¢ < 2) Low/Intermediate-degree Modes with
r./ R < 0.3
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Seismic minimum between Cycles 23-24

Unresolved observations from GOLF Resolved observations from GONG
Low-degree Modes (0 < € < 2) Low/Intermediate-degree Modes (0 < £ < 120)
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Summary

v' Long-term simultaneous Sun-as-a-star observations from GOLF and VIRGO onboard SoHO, along
with ground-based BiSON and resolved-disk observations from GONG clearly show that there

are similarities as well as differences between unresolved- and resolved-disk observations.

v' The oscillation frequencies from all observations do vary in phase with the solar activity cycle,
however the minimum sensed by the modes confined to the convection zone happened around
the same time as in the solar activity indicators while the modes travelled to the core sensed

minimum about a year earlier.

v' Based on Sun-as-a-star observations, it has been suggested that the magnetic layer of the Sun
is changing gradually and has become thinner in last 2 solar cycles. Similar analysis with modes in

intermediate-degree range do not support this findings.
Thus, the helioseismic observations covering all regions below the surface for

several solar cycles are necessary to understand the variability of different

layers.in the solar interior and itsink to. the.surface magnetic activity. 23



