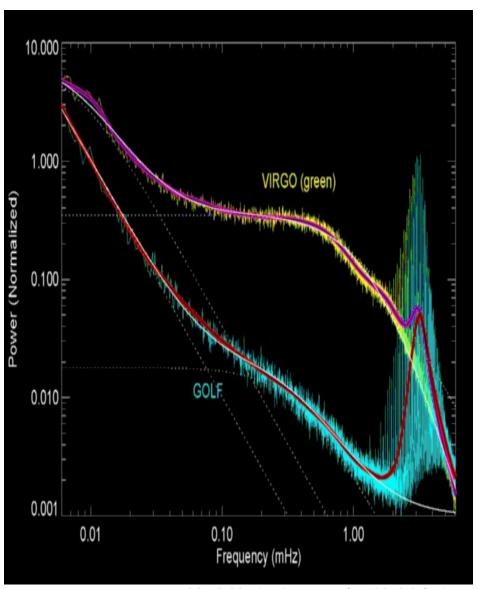

Gravity modes: Results, limitations and perspectives

Sylvaine Turck-Chièze



Context SOHO 1988-2011 New neutrino detections 1990-2008 LASERS 2007-2025...

Since the beginning, VERY Important issues

 Verify the hypotheses of the pure theoretical SSM

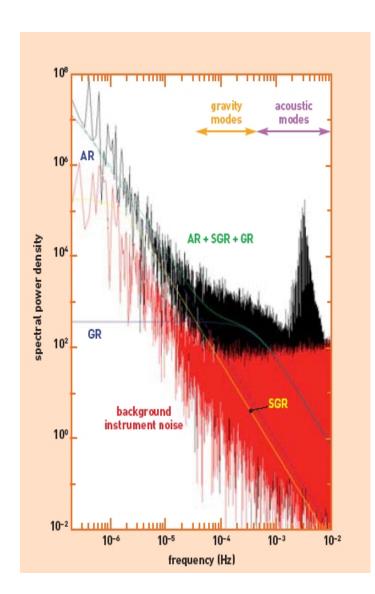
Acoustic modes: GOLF+MDI, GOLF+SDO?

 Go beyond a transition toward dynamics

Gravity modes
GOLF versus VIRGO

Acoustic modes: Fundamental physics

 Seismic model for the prediction of different neutrino sources face to new detections in 4 important detectors in addition to SSM predictions: perfect and better agreement between them than SSM


2 Nobel prizes (2002, 2008)

- Better CNO photospheric abundances
- Better opacity tables (2 sets) CEA and Los Alamos
- New opacity measurements at la Sandia and first criticism on calculations, other experiment in development, we wait the results 2020? other proposals status: Vol 515

ASP Conf Series

SOHO 29 Nice 27 Novembre 2018 Sylvaine Turck-Chièze

Before and just after the launch

- Designed and verified performances of GOLF: 1mm/s integrated on 3 weeks for 6 10⁶ cnts/s per PM
- Study in laboratory to get detector + electronics that allow these performances
- Choice of the detector: Hamamatsu PM
- Choice of the electronic: a lot of studies to improve it
- Then 2 years of laboratory checks
 1992-1994 + ... very useful

Just after the launch: verification of the noise: the quality of GOLF detection justifies to look for gravity modes

Involved persons in Saclay

- Hervé Dzitko: thesis 1995, preparation of the GOLF detector, performances
- **Sébastien Couvidat**: thesis 2003, search for gravity modes detection, characteristics of the modes and the splitting
- **Jérome Ballot**: thesis 2004 extension to asteroseismology then data analysis of GOLF
- Savita Mathur: thesis 2007, mode predictions and participation to GOLF-NG beyond GOLF
- Rafael Garcia since 1998 analysis of the data, methods
- Myself from 1988 to 2013: predictions, methods, analysis, models and preparation of the future

Altogether more than 50 refered papers including 3 reviews PhysRep with **Eric** 1993 before launch, RPPh2011 with S. Couvidat, RAA 2012 **with I. Lopes** with all the frequency values that we have explored

Gravity modes with GOLF internal dynamics of the Solar core?

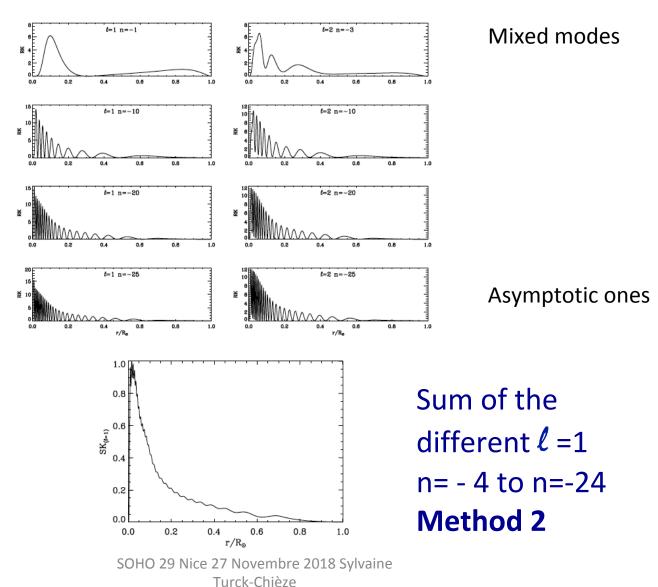
Different approaches (methods) have been investigated:

The asymptotic region has been explored before SoHO (Stanford, Nice): no detection

- High frequency range: mixed modes research for individual pattern to see the dynamics and characteristics of the modes (Saclay)
- Global approach (Saclay) of intermediate g modes
- Asymptotic behaviour (Nice)

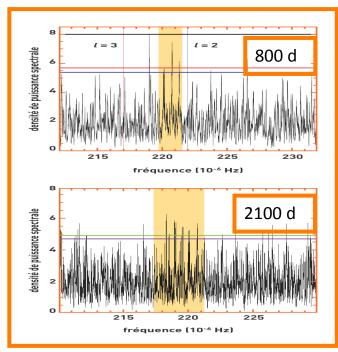
TABLE 1
LIST OF g-MODE FREQUENCIES FOR THE SOLAR MODEL Seismic2

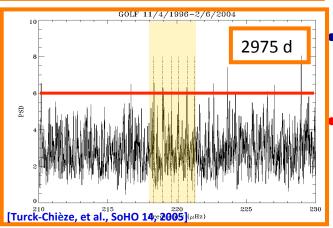
$\ell = 1$				$\ell = 2$			
n	ν (μHz)	n	ν (μHz)	n	ν (μHz)	n	ν (μHz)
	(//		(/)	n	(,,,,,,		(/)
-46	14.6	-22	30.0	-46	24.9	-22	50.6
-45	14.9	-21	31.4	-45	25.5	-21	52.8
-44	15.3	-20	32.9	-44	26.0	-20	55.3
-43	15.6	-19	34.5	-43	26.6	-19	58.0
-42	16.0	-18	36.3	-42	27.2	-18	60.9
-41	16.4	-17	38.4	-41	27.9	-17	64.3
-40	16.8	-16	40.6	-40	28.5	-16	67.9
-39	17.2	-15	43.2	-39	29.2	-15	72.0
-38	17.7	-14	46.1	-38	29.9	-14	76.6
-37	18.1	-13	49.3	-37	30.8	-13	49.3
-36	18.6	-12	53.1	-36	31.6	-12	87.8
-35	19.1	-11	57.4	-35	32.5	-11	94.6
-34	19.7	-10	62.5	-34	33.4	-10	102.5
-33	20.2	-9	68.5	-33	34.3	-9	111.7
-32	20.9	-8	75.7	-32	35.4	-8	122.6
-31	21.5	-7	84.4	-31	36.5	-7	135.6
-30	22,2	-6	95.2	-30	37.6	-6	151.3
-29	22.9	-5	109.1	-29	38.9	-5	170.5
-28	23.8	-4	127.7	[↓] −28	40.2	-4	194.2
-27	24.6	-3	153.3	-27	41.6	<u>-3</u>	222.1
-26	25.5	-2	191.6	-26	43.2	-2	256.2
-25	26.5	-1	262.9	-25	44.8	-1	296.4
-24	27.6			-24	46.6		
-23	28.7			-23	48.5		


Theoretical gravity mode frequencies

for the range of observations covered by the different analyses obtained with the solar seismic model

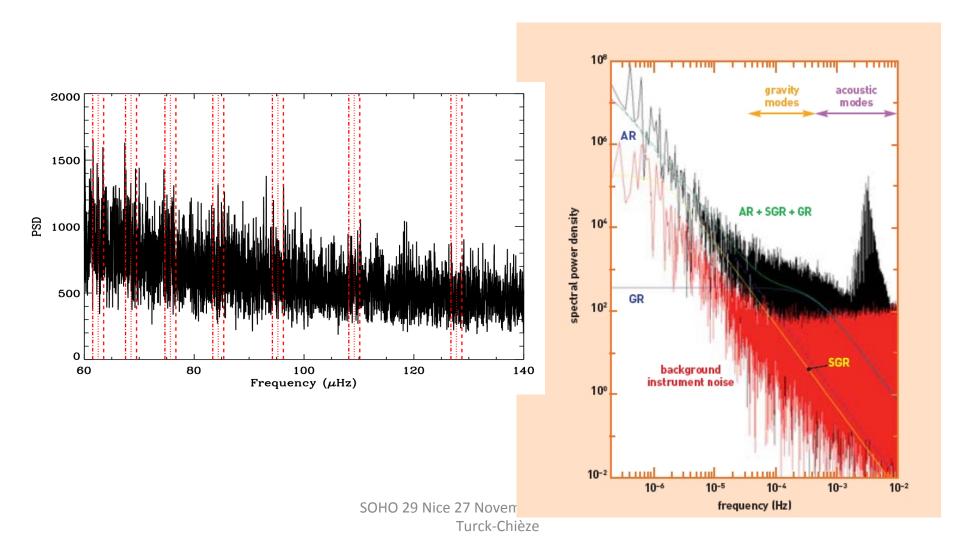
Mathur et al. 2007


Sensitivity of the different gravity modes


Mathur et al. 2007

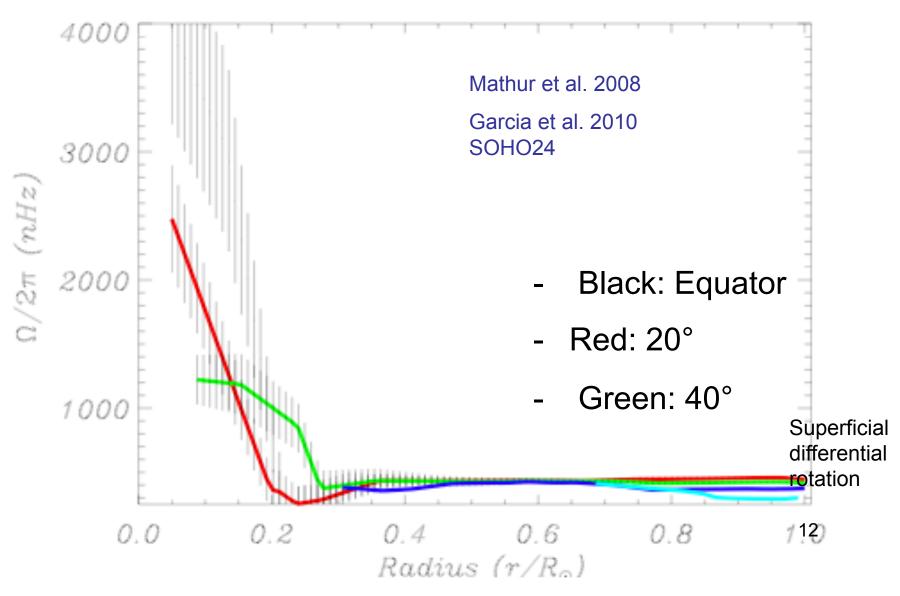
High frequency range: research of multiplets

along time: Turck-Chièze et al AA 2004, 2005, Mathur et al. 2007

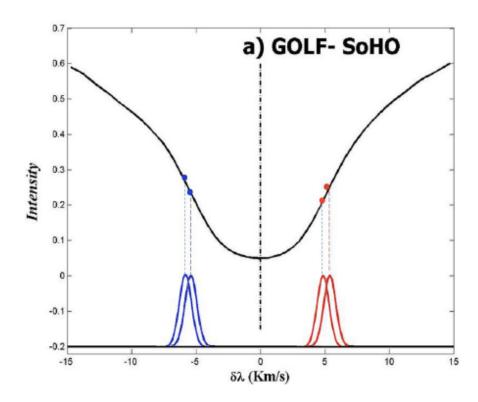


SOHO 29 Nice 27 Novembre 2018 Sylvaine Turck-Chièze

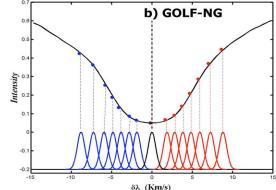
- See explicitly the splitting
- See if they show the same core rotation axis than the rest of the Sun
- See **characteristics of excitation**: no stability (10nHz variability), no long duration excitation
- See the **amplitude**, the 220 μ Hz mode is the highest excited one (Guzik et al.), some components at more than 98% CL
 - Improve the **density profile** in complement to sound speed profile
 - Limitations due to the malfunctioning of the mechanisms and the increase of the photon noise or solar noise: no clear peaks for 4182 days

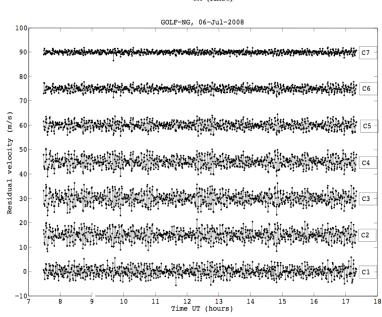

Limitations on the duration and noise 10 years: followed patterns

Need to be confirmed by future instruments

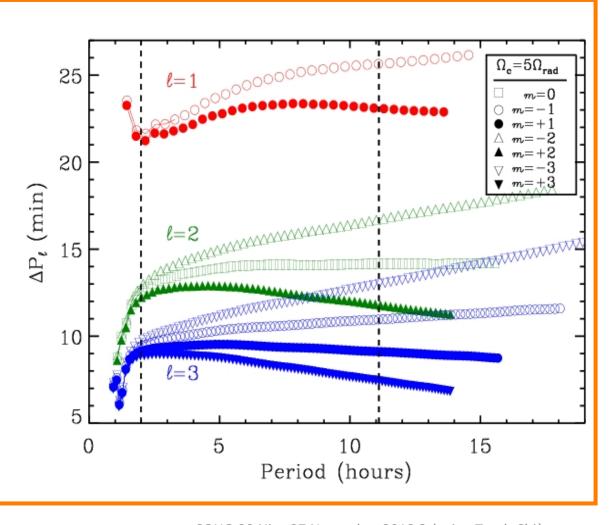


Constraints on solar core rotation from individual g modes


2D inversion from A. Eff Darwich code!!

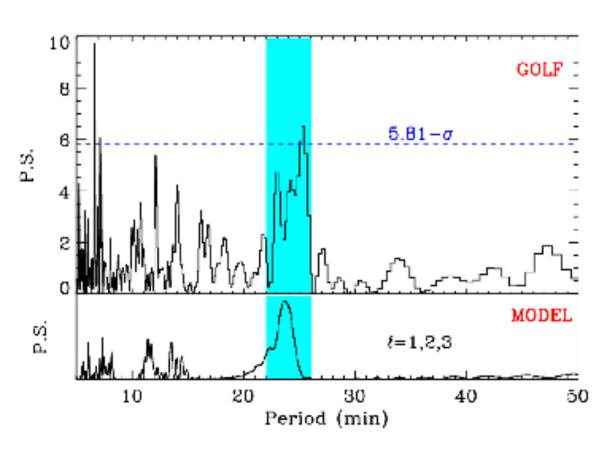


Limitations of the velocity measurements on sodium line from IRIS, GOLF to GOLF-NG



Principle is one thing and very promising, detector and electronic another!!

Second approach: one sums 20 modes below 150 µHz: Garcia, T-C et al. Science 2007

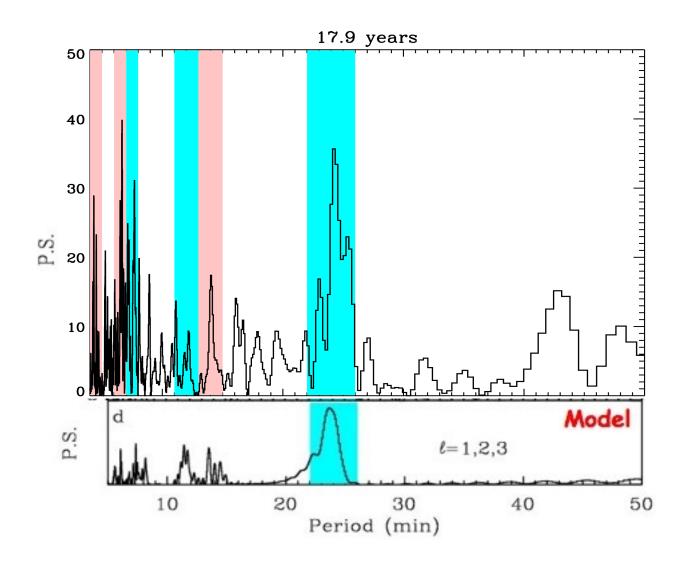

In the intermediate regime

If p modes are equidistant in frequency but g modes are equidistant in period in the asymptotic regime

$$\Delta P_{\ell} = P_{\ell,n+1} - P_{\ell,n}$$

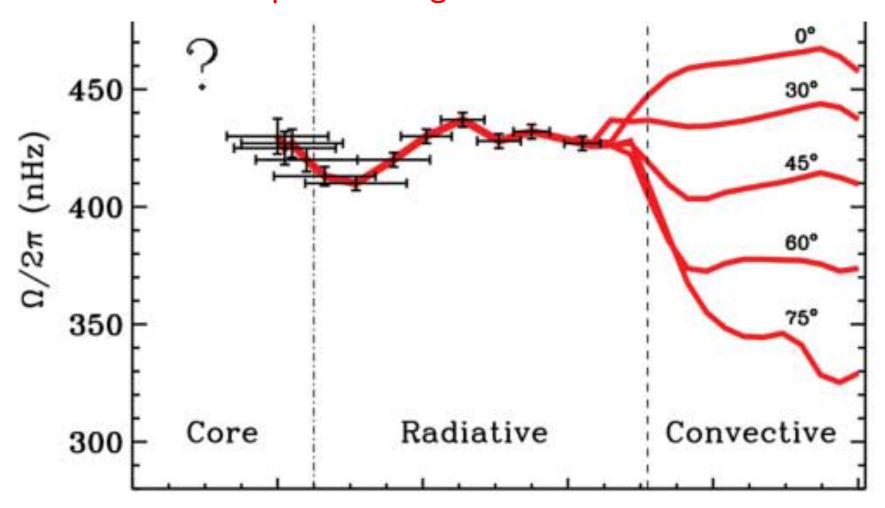
$$\Delta P_1 = P_0/2^{1/2}$$

Comparison between GOLF data and simulations



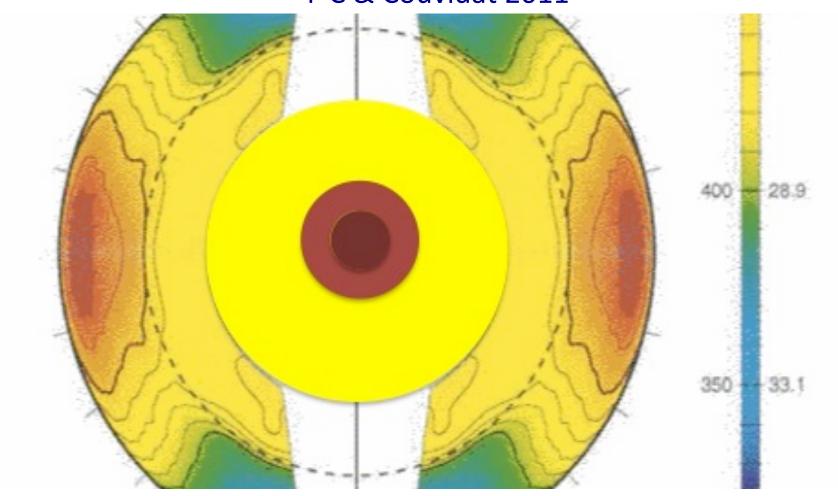
In the simulations, a splitting corresponding to a central rotation of 5 times the surface rotation is considered

A probability of noise is estimated more than 99.9% is observed with time First after 10 yrs and the pattern is still present after 18 yrs


SOHO 29 Nice 27 Novembre 2018 Sylvaine Turck-Chièze

More noise (counting rate reduced by about 30: photocathode, filters, cell...) but the pattern is still there and may be more structured

Be careful: this figure is not a result of our Science paper

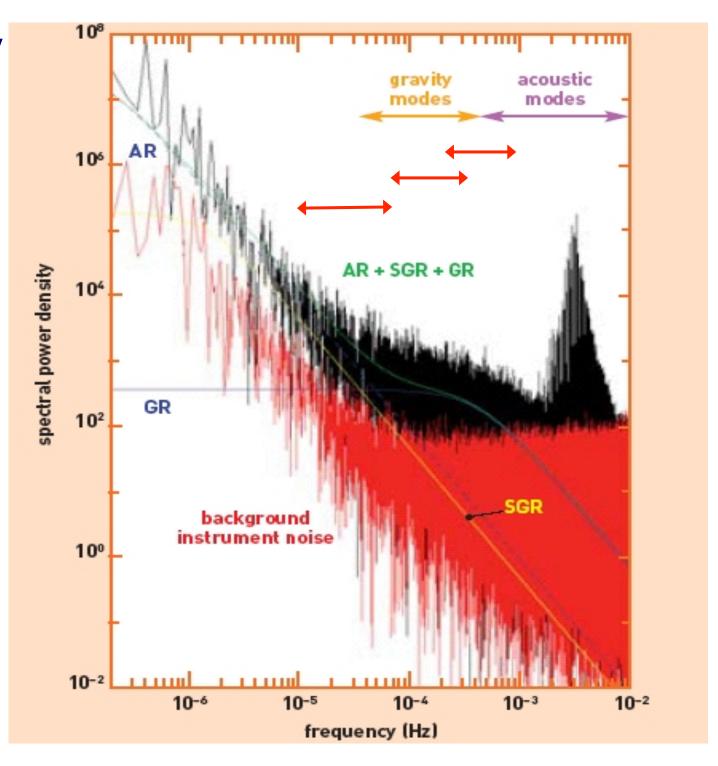

it is figure I of the paper that shows the limitations of acoustic modes: echo of previous fights between IRIS and BISON

Result of the Science paper 2007

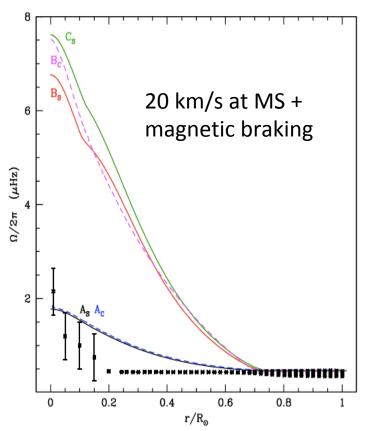
the detection of intermediate gravity modes are compatible with a core rotating 5 times quicker than the surface

T-C & Couvidat 2011

Third Search: asymptotic region


See talk of Eric

Summary


I: individual search *l* =1, *l*=2 above 150 μHz then 60-230 μHz 1998-2004-2005

II: global research $\ell = 1,2,3$ 25-140 μHz 20 modes

III: global research 7-30 μHz 79 *l*=1, 117 *l*=2

Implication of the different results of g-mode detections characteristics and rotation on solar physics

Weak initial rotation without magnetic braking

- SSM is unsufficient to describe the Sun
- Gravity modes do not produce infinite narrow peaks, they are often reexcited in the turbulent BCZ
- The solar rotation of the core is 4-5 times greater than the surface rotation,
- It seems not to be explained as a rapidly rotating young star that has been braked by magnetic wind at MS T-C et al. 2010, A&A 715, 1539
- The core rotation is probably the relics of an initial rotation of a slow rotating star

Atmosphere in the seismic community!!

- Different communities different atmospheres: neutrino community, seismic one, plasma physics one
- **Doubt and research of truth is normal in science** but not pretentious posterings, « mockeries » or absence of quotation of the previous papers ...
- Space mission is sufficiently expensive and rare to explore the data with completeness and to document the results for future works

For me, **GOLF** has detected gravity modes, we have several results that do not contradict each other, it is a difficult research and the community must not neglect this fact for future projects, even there is space for complementary useful information and theoretical work.

We have a second detector aboard GOLF/SoHO: do we use it? Do we verify temperature of filters and cell, HT PM? We must as we observe too much noise to use seriously GOLF data today

Merci à Lionel Bigot, ESA, CNES to initiate this 29th meeting

References SoHO/GOLF Gravity modes detection

- Turck-Chièze et al. 2004, ApJ, 604, 455
- Turck-Chièze et al. 2004, Phys Rev Lett 93, 1102
- Mathur et al. 2007, ApJ, 668, 594
- Garcia et al. 2007, Sci 316, 1591
- Garcia et al. 2008, AN 329, 476
- Mathur et al.2008, A&A, 484, 517
- Turck-Chièze et al. 2010 ApJ 715, 1539: history of the solar rotation
- Garcia et al. 2011, JPhCS, 271, 2046
- Turck-Chièze & Couvidat, 2011, Rep Prog Physics, 74, 6901
- Turck-Chièze & Lopes, 2012, RAA, 12,1107
- Fossat et al. 2017, A&A, 604, 40
- Fossat, Schmider, 2018, A&A, 612? L1

References GOLF-NG Gravity modes checks and perspectives

- Turck-Chièze et al. 2006, Adv Space Research, 38, 1812
- Turck-Chièze et al. 2008, AN, 329, 521: design and performances
- Turck-Chièze et al. 2009, Exp Astron., 23, 1017-1055 DynaMICS
- Turck-Chièze et al. 2012. Progress in Solar/Stellar Physics with Helio- and Asteroseismology 462, 240.